Society of Automotive Engineers
Performance Working Group 

Mission: 
Develop procedures for testing the PEM fuel cell system and its major subsystems for automotive applications.

Identification SAE J 2615
   
Performance Test Procedures of Fuel Cell Systems
    For Automotive Applications.

 

Scope This recommended practice is intended to provide a framework for performance testing of fuel cell systems (FCS’s) designed for automotive applications with direct current (DC) output.  The procedures described allow for measurement of performance relative to claims by manufacturers of such systems with regard to the following performance criteria:  Power, Efficiency, Transient Response, Start and Stop Performance, Physical Description, Environmental Limits, Operational Requirements, Integration. Since this recommended practice is based on the principal of performance measurement relative to a claim, the testing parties should take care to include any qualifying or unique circumstances leading to the test results reported in order to achieve full disclosure. For example, efficiency as defined in section 3.1.9 allows for the inclusion of thermal output benefit.  If a test result is reported which takes advantage of this allowance this stipulation should be noted with the efficiency figure and the useful purpose of the thermal output (e.g. cabin heating) should be made clear.

Status

Published January 5, 2005. Revision A published October 20, 2011.

Available at www.sae.org.


Identification SAE J 2616
    Performance Test Procedures for the
   
Fuel Processor Subsystem of Automotive Fuel Cell System.

 

Scope This recommended practice is intended to serve as a design verification procedure and not a product qualification procedure. It may be used to verify design specifications or vendor claims. Test procedures, methods and definitions for the performance of the fuel processor subsystem (FPS) of a fuel cell system (FCS) are provided. Fuel processor subsystems (FPS) include all components required in the conversion of input fuel and oxidizer into a hydrogen-rich product gas stream suitable for use in fuel cells. Performance of the fuel processor subsystem includes evaluating system energy inputs and useful outputs to determine fuel conversion efficiency and where applicable the overall thermal effectiveness. Each of these performance characterizations will be determined to an uncertainty of less than +/- 2% of the value. The method allows for the evaluation of fuel processor subsystems for two general cases. - Compare fuel processors with different designs (e.g., catalytic partial oxidation reforming, autothermal reforming or steam reforming) on a common basis where no specific fuel cell system design has been identified. - Assess the performance of a specific fuel processor in the context of a specific fuel cell system design. This document applies to all fuel processor subsystems for transportation applications regardless of fuel processor type, fuel cell type, electrical power output, thermal output, or system application (propulsion or auxiliary power unit (APU)). For example, the fuel processor subsystems associated with proton exchange, molten carbonate and solid oxide fuel cells can differ due to the requirements of the fuel cells themselves. Performance of the fuel processor subsystem, and preprocessor if applicable, is evaluated. A stand alone fuel processor (system) or even the primary reactor (e.g., autothermal, partial oxidation or steam reforming reactor) of a fuel processor subsystem that would normally be integrated into a fuel cell system can be evaluated. The fuel processor together with the preprocessor (if required) converts the fuel (gasoline or other liquid hydrocarbon) to a reformate gas consisting largely of H2, CO, CO2, H2O and N2 (if air is used). After the fuel processor subsystem, reformate gas typically contains only trace levels of carbon bearing components higher than C1. The FPS would be evaluated in a test facility that is designed to evaluate a stand-alone component rather than a portion of the reformer such as a specific catalyst or a particular vessel design. Any fuel(s) mutually agreed to by the test parties can be used such as 1) straight run gasoline (EPA Fuel- CARB reformulated gasoline Tier II, 30 ppm sulfur), or 2) methanol or 3) hydrocarbon fuel such as iso-octane, naphtha, diesel, liquefied natural gas (LNG) or LPG (propane), etc. The procedures provide a point-in-time evaluation of the performance of the fuel processor subsystem. Steady state and transient (start-up and load-following) performance are included. Methods and procedures for conducting and reporting fuel processor testing, including instrumentation to be used, testing techniques, and methods for calculating and reporting results are provided. The boundary limits for fuel and oxidant input, secondary energy input and net energy output are defined. Procedures for measuring temperature, pressure, input fuel flow and composition, electrical power and thermal output at the boundaries are provided. Procedures for determination of the FPS performance measures such as fuel processor efficiency and cold gas efficiency at a rated load or any other steady state condition are provided. Methods to correct results from the test conditions to reference conditions are provided. SI units are used throughout the recommended practice document.

Status

Published 2005.  Revision A published August 2011.

Available at www.sae.org


Identification
SAE J2617
   
Performance Test Procedure of
    PEM Fuel Cell Stack Subsystem for Automotive application.

 

Scope This recommended practice is intended to serve as a procedure to verify the design specifications or vender claims of any PEM (Proton Exchange Membrane) type fuel cell stack sub-system for automotive applications. In this document, definitions, specifications, and methods for the performance characterization of the fuel cell stack sub-system are provided. The performance characterization includes evaluating electrical outputs and controlling fluid inputs and outputs based on the test boundary defined in this document. In this recommended practice, a typical fuel cell stack sub-system includes the following: - Fuel cell stack(s) - An Assembly of membrane electrode assemblies. - (MEA), current collectors, separator plates, cooling plates, manifolds, and a supporting structure. - Connections for conducting fuels, oxidants, and exhausts. - Electrical connections for the power delivered by the stack sub-system. - Devices for monitoring electrical loads, which are for interface to the fuel cell system (FCS). - Devices for monitoring cell voltage (Not all stacks are designed to read every cell voltage.) - Additional connections for conducting additional fluids, such as cooling media and inert gas. - Instrumentation for detecting normal and/or abnormal operating conditions. - Enclosures or pressure vessels, and ventilation systems. Not included in the sub-system are the following: - Fuel and air processors - Thermal management system - Power conditioner and distributor - Controllers The goal of this recommended practice is to provide a method for users to conduct fuel cell stack sub-system tests on a common basis. This allows the comparison of fuel cell stack sub-systems with different designs where no specific fuel cell system design has been identified. Alternatively, the performance of a specific fuel cell stack sub-system can be assessed in the context of a specific fuel cell system design based on the agreement of the testing parties

Status Published November 2007. Revision A published August 2011.
Available at www.sae.org